
Distributed Query Processing in an Ad-Hoc
Semantic Web Data Sharing System

Jing Zhou∗‡, Gregor v. Bochmann† and Zhongzhi Shi‡
∗School of Computer Science

Communication University of China, Beijing, China
Email: zhoujing@cuc.edu.cn

†School of Electrical Engineering and Computer Science
University of Ottawa, Ontario, Canada

Email: bochmann@eecs.uottawa.ca
‡The Key Laboratory of Intelligent Information Processing

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
Email: shizz@ics.ict.ac.cn

Abstract—Sharing the Semantic Web data in proprietary
datasets in which data is encoded in RDF triples in a decen-
tralized environment calls for efficient support from distributed
computing technologies. The highly dynamic ad-hoc settings
that would be pervasive for Semantic Web data sharing among
personal users in the future, however, pose even more demanding
challenges for the enabling technologies. We extend previous
work on a hybrid P2P architecture for an ad-hoc Semantic
Web data sharing system which better models the data sharing
scenario by allowing data to be maintained by its own providers
and exhibits satisfactory scalability owing to the adoption of a
two-level distributed index and hashing techniques. Additionally,
we propose efficient distributed processing of SPARQL queries
in such a context and explore optimization techniques that build
upon distributed query processing for database systems and
relational algebra optimization. We anticipate that our work will
become an indispensable, complementary approach to making
the Semantic Web a reality by delivering efficient data sharing
and reusing in an ad-hoc environment.

I. INTRODUCTION

As RDF (Resource Description Framework) [1] converters
are available for many kinds of application data, it is very
likely that large amounts of RDF data, that is, the Semantic
Web data, will be generated in personal computers. One would
be able to carry the data around and share it with others just
like what we could currently do with the document, music,
or video files in our computers. In most cases, Semantic
Web data sharing among personal computers will occur in
an ad-hoc environment1 where querying becomes much more
complicated in the absence of a central directory node. We
argue that providing powerful support to enable such activities
is an indispensable and complementary approach to making
the Semantic Web a reality [2].

In an ad-hoc Semantic Web data sharing system that com-
prises an array of distributed nodes, each node may act as
both a data provider and a data consumer. This fits well with
the peer-to-peer (P2P for short) paradigm and therefore makes

1This is very much like the way that Internet users share music and video
files in a peer-to-peer fashion.

the P2P computing an ideal candidate for facilitating Semantic
Web data sharing in an ad-hoc manner. Furthermore, most
Semantic Web query mechanisms assume the target data is
within two hops away, while P2P computing, as we know, is
proficient in offering efficient and scalable approaches when
data sharing is much more complex; for instance, the target
data may reside on a node more than two hops away. In
such a scenario, P2P computing will primarily deal with query
forwarding in a fully distributed environment, that is, in the
absence of any central directory node.

Put simply, P2P systems come in three categories: cen-
tralized, unstructured, and structured P2P. Unstructured P2P
(e.g. Gnutella) is most used in a context in which each
node, or peer, stores locally and manipulates data items of its
own and no central lookup service is available. This feature
corresponds to the typical scenario of ad-hoc Semantic Web
data sharing. There exists no such function that can directly
map the (hashed) name of a data item directly onto its
location, as in DHT-based structured P2P systems, leading to
unsatisfactory scalability in unstructured P2P systems. Against
this background, Peng et al. presented a two-layer hybrid
network, called HP2P [3], that builds a Chord ring on top of an
unstructured P2P lower layer in order to achieve satisfactory
scalability, efficiency, and stability that would otherwise only
be obtainable in two separate paradigms.

Inspired by [3], we proposed a similar architecture that is
based upon the hybrid P2P paradigm [2]. On the upper level,
some nodes self-organize and form a ring topology while on
the lower level other nodes choose to attach to one of the
nodes on the ring, forming a locally centralized architecture2.
We identified that, to locate RDF data in such a hybrid P2P
paradigm, a distributed query mechanism that resolves queries
for RDF data, SPARQL queries for example3, is essential
to facilitate efficient and scalable data sharing in the ad-hoc

2An unstructured P2P architecture as in [3] is also feasible.
3However, we make no restrictions on the type of prospective queries

submitted to or processed by the proposed system in a more generic settings.

context of interest.
Cai and Frank dealt with distributed query processing in a

scalable RDF repository based on Chord, called RDFPeers [4].
RDFPeers was intended to act as an RDF data storage and
management system in which RDF data is assigned to and
stored by one (or more for robustness purposes) of the Chord
nodes on the ring and that node may not necessarily be the data
provider. Techniques such as locality preserving hashing and
range ordering algorithms can be used to efficiently resolve
disjunctive and range queries in RDFPeers, see Sect. II. Our
work presented here differs mainly in the following ways.
● Our system is anticipated to serve Semantic Web data

sharing in ad-hoc environments, which implies that data
providers store and manipulate their own data locally.
Obviously, this excludes the direct application of dis-
tributed query processing techniques, as in [4], to solve
our problem.

● The distributed index in our system adopts a two-
level structure for efficient location of RDF data, see
Sect. III-B. This allows RDF data to be maintained by
their providers (unobtainable by DHT-based P2P tech-
niques alone) while still helps the system to achieve
desirable scalability comparable to that of the DHT-based
P2P systems.

● We explore the distributed solution to processing queries
of a richer set than those that can be handled by RDFPeers
(see Sect. IV) and are particularly keen on SPARQL
queries within the current scope of our work.

In this work, we set out to explore a distributed query
mechanism that deals with SPARQL query processing and
related optimization issues in a context of a hybrid P2P
architecture. The remainder of the paper is organized as
follows. Related work is reviewed in Section 2. In Section
3, we give a brief introduction to the hybrid P2P architecture
for ad-hoc Semantic Web data sharing systems. We provide the
details of a distributed query processing mechanism in Section
4. Finally, a summary and open research issues are presented
in Section 5.

II. RELATED WORK

In this section, we review related work from P2P computing,
the Semantic Web, and distributed database systems that
either offers the most inspiration to us or provides important
theoretical foundations to our work.

Our work was much motivated by [4] that presented a
distributed and scalable RDF repository called RDFPeers. The
work extended Chord [5] by applying hash functions to the
subject (s), predicate (p), and object (o) values of an RDF triple
in the form of (s, p, o). Each triple is therefore stored at three
places in a multi-attribute addressable network. RDFPeers can
efficiently resolve conjunctive multi-attribute queries (all triple
patterns4 sharing the same subject) by a recursive algorithm
that seeks the candidate subjects for each predicate recursively

4A triple pattern resembles an RDF triple except that its subject, predicate
and/or object may be a variable [6].

and intersects the candidate subjects within the network, that
is, on the Chord ring. In addition, RDFPeers is able to resolve
a range query for ?o5 efficiently by using a uniform locality
preserving hashing function and a range ordering algorithm
that sorts the query ranges in ascending order. Thanks to its
roots in Chord, RDFPeers demonstrated very good scalability
and fault resilience.

Peng et al. proposed a hybrid hierarchical P2P network,
HP2P, which combines both the unstructured P2P and struc-
tured P2P paradigms [3]. At the lower unstructured P2P layer,
nodes are organized into clusters which are managed by
supernodes and messages are propagated by flooding within
individual clusters. At the upper structured P2P layer, supern-
odes from each cluster are further organized into a Chord ring.
By adopting a hybrid P2P model, HP2P achieves desirable
properties including stability, scalability, reduced storage load
on Chord nodes, and limited number of flooding. This hybrid
model better fits with the Semantic Web data sharing scenario
in which data is maintained by its own provider and is also
able to deliver satisfactory scalability by adopting Chord as
the substrate. Inspired by HP2P, we introduce a similar hybrid
architecture (see Sect. III-A) in our work and investigate
specific issues that arise when such an architecture is employed
in an ad-hoc Semantic Web data sharing system.

Another piece of work that couples the structured P2P
with unstructured P2P models can be seen in [7] in which
Asaduzzaman et al. exploited the properties of a clique-based
clustered overlay network, named eQuus [8], to build an
efficient and resilient transport overlay for live multimedia
streaming. In eQuus, nodes close to each other in terms of
proximity in the underlying physical network make up a clique
and the DHT overlay is formed among cliques. An id assign-
ment process gives each clique a unique id so that cliques
with numerically adjacent ids occupy adjacent segments of
the proximity space. Nodes in a clique maintain an all-to-
all neighborhood. CliqueStream introduced stable nodes with
high capacity into each clique in eQuus. For each channel6,
a dissemination tree is formed by stable nodes, each from
a participating clique and the source at the root of the tree.
Apart from the tree structure, the stable nodes in each clique
also maintain data structures that reflect the mesh-structured
transport overlay inside the clique.

The semantics and complexity of SPARQL is extensively
discussed in [9]. Particularly, we are keen on this work because
it carries out a formal study of the semantics of SPARQL for
its graph pattern matching facility. The study provides not only
help for evaluation of all kinds of graph pattern expressions in
SPARQL queries but also help in SPARQL query optimization
that we intend to address in our own work.

Schmidt et al. identify a large set of algebraic equivalences
for the SPARQL algebra which can serve as rewriting rules
for query optimization [10]. These include basic rules that
hold with respect to common algebraic laws (such as the rules

5In RDFPeers, the only attribute that can have numeric values are the object.
6A channel refers to a live stream of content from a single source to multiple

destination nodes.

for associativity, commutativity, and distributivity), general-
purpose rules from the relational context (such as those for
projection and filter pushing), and SPARQL-specific rewriting
rules.

To achieve satisfactory overall system performance, the de-
signers of distributed database systems are concerned about the
issue of join site selection [11] that revolves around choosing
the “right” site to perform each join operation [12]. The
well-known approaches include Move-Small, Query-Site, and
Third-Site. In the move-small strategy [13], if a join operation
involves data fragments on two different sites, then the smaller
data segment should be shipped to the site of the larger data
segment. The query-site strategy allows a join to be performed
at the site where the query was submitted. Ye et al. presented
a third-site strategy for join site selection that takes into
account the dynamic properties of the system obtained from
QoS monitoring tools [14]. For optimization purposes, we will
apply these strategies to better perform SPARQL queries in
our system in response to various application environments,
for instance, static or dynamic. Readers interested in classic
algorithms, models, and techniques for query processing and
optimization in distributed database and information systems
may refer to [15].

III. A HYBRID P2P ARCHITECTURE FOR AD-HOC
SEMANTIC WEB DATA SHARING

A. A Hybrid P2P Architecture

We proposed a hybrid architecture for Semantic Web data
sharing systems in an ad-hoc settings in [2]. The hybrid P2P
network consists of a number of nodes and extends Chord [5]
with RDF-specific retrieval techniques. Some nodes willing
to host indices (for DHT-based query forwarding) for other
nodes self-organize and form a ring topology; and we refer to
them as index nodes. Other nodes that are reluctant to do so
will need to attach to one of the nodes on the ring, that is, to
an index node, and we simply call them storage nodes. Each
node has an IP address by which it may be contacted.

 N7 N4 N1
 N12 N15 D1 D2 D3 D4

Fig. 1. A peer network of 9 nodes in a 4-bit identifier space

In Fig. 1, we show a peer network of 9 nodes in a 4-bit
identifier space. The node identifiers N1, N4, N7, N12, and
N15 correspond to index nodes. In the meantime, the node
identifiers D1, D2, D3, and D4 represent four storage nodes

to which index nodes have a pointer (represented by a single-
ended arrow with a dotted line) in their indices.

B. A Two-Level Distributed Index Structure

Our system features a two-level distributed index structure7,
see Fig. 2, which can be employed to locate target RDF
triples as follows. Whenever a query initiator issues a primitive
SPARQL query (see Sect. IV-C) containing a triple pattern
⟨si, pi, o⟩, it will first consult the index to find an index node
that has the information about related storage nodes based on
Hash(si, pi). If the index node is N7, then using Kj= Hash(si,
pi) as the index, the related storage nodes D1, D3, and D4 can
be further located in the location table of N7 (as we will soon
explain).

Location Table Index Nodes

<si, pi, ?o> Kj=Hash(si,pi) D1(10), D3(20),D4(15) D1 D3 D4
N7

Location Table N15
Location Table N1

…
… …

SPARQL Query Interface
Query Initiator Storage Nodes

Fig. 2. A Two-Level Distributed Index Structure

The overall index is spread across the index nodes when it is
constructed and we explain the process of index construction
as follows. Recall that RDFPeers stores each RDF triple at
three places in a multi-attribute addressable network by ap-
plying globally known hash functions to its subject, predicate,
and object values [4]. We extend such practice by applying
hash functions to the subject ⟨s⟩, predicate ⟨p⟩, object ⟨o⟩, and
also to subject and predicate ⟨s, p⟩, predicate and object ⟨p, o⟩,
and subject and object ⟨s, o⟩ of each triple shared by a node
and store the mapping between the hash value (i.e. the key)
and the information about the nodes that share corresponding
triples at six places (in the location table of possibly different
index nodes as illustrated in Table I) on the Chord ring.

For instance, when a storage node wants to join the network,
say N4 in Fig. 1, and it has a triple of the form (si, pi, oi),
an index on its subject ⟨si⟩ will be stored in the location table

7The distributed index adopted in our work is not limited to any specific
technique, such as Chord. Many other P2P networks based on DHTs may be
used. However, we will use the Chord ring to explain some of the issues for
ease of understanding.

TABLE I
A LOCATION TABLE FOR THE INDEX NODE N7

Key Storage node (frequency)
K1 D1 (15), D3 (10)

K2 D1 (10), D3 (20), D4 (15)

K3 D1 (30)

at the successor node of the hash value of ⟨si⟩. Similarly, an
index of the same triple on its subject and predicate is going
to be maintained in the location table at the successor node of
the hash value of ⟨si, pi⟩. The remaining four indices on ⟨pi⟩,
⟨oi⟩, ⟨pi, oi⟩, and ⟨si, oi⟩ are created and stored in the same
manner. If N4 possesses other triples for sharing, six indices
for each of the triples need to be established and maintained.

The location table is mainly used for determining which
storage node(s) can satisfy an incoming query for RDF triples.
An example location table for a given index node N7 is
depicted by Table I. In each row of the table, the Key Ki

(1 ≤ i ≤ n) is the hash value of a single attribute or a pair
of attributes of triples that are maintained by a list of storage
nodes indicated by Storage node. The frequency number (in
brackets) indicates the number of triples that share the same
hash value for their attribute(s), and this frequency number
plays an important role in the optimization of distributed
SPARQL query processing as described in Sect. IV. Whenever
an index node receives a query with a single triple pattern
(see IV-C) (si, ?p, ?o) for RDF data (see Sect. IV-C), N7 for
instance, and the hash value of the subject si happens to be
K3, N7 will then forward the query to the storage node D1.

C. Index Node Join

The join of an index node is more complicated than the
join of a storage node because index nodes are responsible
for locating a node that shares the RDF triples of interest and
this ability should be preserved during node arrival (as well as
departure). Apart from the tasks8 necessary for existing index
nodes to maintain their data structures up-to-date for lookups
upon the arrival of a node, the index node join involves the
transfer of a portion of the location table to the new node from
its predecessor node.

A newly arriving index node, Ni for instance, becomes the
successor node only for keys that were previously maintained
by the node immediately following it. Hence, Ni can simply
request that node to transfer a portion of its location table.

D. Node Departure and Failure

When a storage node leaves the whole system or it crashes
unexpectedly, the impact on the rest of the whole system is
not significant. The location table of related index nodes that
have pointers to such a storage node may remain inconsistent

8In Chord, for example, such operations would include initializing the
finger tables and predecessor of the new node, updating the finger tables and
predecessors of existing nodes so as to reflect the arrival of a new node, and
moving keys that the new node is now responsible for from its predecessor
[5].

for a while. It will, however, soon become up-to-date once
no acknowledgement for receipt of query messages from the
failed storage node is received after a timeout period and
related entries are removed.

The graceful departure of an index node requires its imme-
diate successor node to take over its location table and other
related data structures such as the finger table and predecessor
as in Chord. In case that an index node ceases to function
properly and fails, two mechanisms need to be applied to
warrant that the whole system can eventually recover from
such failures: the successor-list and a replication policy. By
replicating data at succeeding nodes, the system will continue
serving queries in an successful and efficient fashion.

E. Workflow for Resolving a Query

Global Query Optimization Query Transformation Query Parsing

RDF Data Repository
Query

 Local Query Execution Post- Processing Result
Fig. 3. A distributed query processing workflow

The workflow for resolving a query in the proposed network
is depicted in Fig. 3 in which the typical components for
distributed query processing in distributed database systems
[16] are presented.

For a query string from the external application, the Query
Parser translates it into an abstract syntax tree composed of the
query forms, graph patterns, and solution sequence modifiers
that we will soon describe in Sect. IV-A. Different parts
of the syntax tree will be further converted into SPARQL
algebra expressions during the Query Transformation process.
The Global Query Optimizer decides the details of how to
execute the operations of the query and creates a global query
plan that best satisfies the optimization criteria. According to
the plan, the query initiator may send sub-queries to other
nodes. These nodes execute sub-queries locally, which may
further involve sub-query shipping and data shipping, see the
following Sect. IV. Intermediate results of sub-queries are sent
to the query initiator which carries out some post-processing
before returning the result to the external application.

Owing to the many parallels between relational algebra
(RA) operators and SPARQL algebra (SA) operators [10],
and the same expressive power of RA and SA as revealed in
[17], distributed query processing techniques from distributed

database systems can be employed in our work and we will
discuss related issues in the context of interest in the following
section.

IV. DISTRIBUTED QUERY PROCESSING

A. The SPARQL Query Language

SPARQL is an emerging de-facto RDF query language as
well as an official W3C recommendation. The query language
is equipped with a powerful graph matching capability and can
be used to express queries against, and retrieve and manipulate
data across disparate RDF data sources [6]. A solution, or
solution mapping, to a SPARQL query µ from V to U is
defined in [9] as a partial function µ: V → U , where V is an
infinite set of variables and U is a set of RDF terms (including
all IRIs9, RDF literals, and blank nodes10). Such a solution
typically contains a set of tuples that contain variables and
their corresponding values in RDF terms. Two solutions µ1

and µ2 are compatible if any variable that they share has the
same value.

The operations including the join of, the union of, and the
set difference between two sets of solution mappings Ω1 and
Ω2 are defined in [9] as follows.
● Ω1 & Ω2 = {µ1 ∪ µ2 ∣ µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are

compatible mappings},
● Ω1 ∪Ω2 = {µ ∣ µ ∈ Ω1 or µ ∈ Ω2},
● Ω1 - Ω2 = {µ ∈ Ω1 ∣ for all µ

′

∈ Ω2, µ and µ
′

are not
compatible}.

PREFIX foaf: ⟨http://xmlns.com/foaf/0.1/⟩
PREFIX ns: ⟨http://example.org/ns#⟩
SELECT ?x ?y ?z
FROM ⟨http://example.org/foaf/xyzFoaf⟩
WHERE {

?x ⟨foaf:name⟩ ?name.
?x ⟨foaf:knows⟩ ?z.
?x ⟨ns:knowsNothingAbout⟩ ?y.
?y ⟨foaf:knows⟩ ?z.
FILTER regex(?name, “Smith”)
ORDER BY DESC(?x)

}

Fig. 4. A SPARQL Query

A SPARQL query comprises four main building blocks.
The query form (including SELECT, CONSTRUCT, ASK,
and DESCRIBE) uses solutions from graph pattern matching
to form the result sets. The dataset (specified by leading
keywords FROM and FROM NAMED) refers to the collection
of RDF graphs [19] that are interrogated by a SPARQL query.
In particular, the IRI following each FROM indicates a graph
to be used to form the default graph, and each IRI in the FROM
NAMED clause is employed to specify named graphs in the
RDF dataset. The graph pattern part specifies the features
of graph pattern matching and the possibility of matching a

9The Internationalized Resource Identifiers [18] are a subset of RDF URI
References that omits spaces and include URIs and URLs.

10A blank nodes in RDF is not a URI reference or a literal and is just a
unique node with an unbound value that can be used in RDF triples.

pattern against named graphs. The solution sequence modifiers
(Order, Projection, Distinct, Reduced, Offset, and Limit) are
applied to create a different sequence of the unordered collec-
tion of solutions generated by graph pattern matching. Figure 4
shows a SPARQL query that needs to find three persons ?x
(whose name contains “Smith”), ?y, and ?z from the given
default graph formed by ⟨http://example.org/foaf/xyzFoaf⟩. In
particular, both ?x and ?y know ?z but ?x and ?y do not know
anything about each other. The resulting triples ⟨?x, ?y, ?z⟩
are sorted in descending order of the value of ?x.

Note that in the ad-hoc Semantic Web data sharing system
that we intend to support, SPARQL queries may include no
FROM (as in Fig. 4) and FROM NAMED keywords to specify
an RDF dataset by reference. In this case, the dataset of the
query will be the union of all triples stored in all storage
nodes in the system. This is because the system allows RDF
triples to be maintained by individual data providers instead
of at a source that can be easily identified by some reference
already known. This makes distributed query processing in
this context more difficult to tackle. We will primarily focus
on how to resolve such queries in this paper.

B. SPARQL Graph Pattern Expressions

The body of a SPARQL query that follows the keyword
WHERE, as shown in Fig. 4, can be a complex RDF graph
pattern expression that may contain RDF triples with variables,
conjunctions, disjunctions, optional parts, and constraints that
impose restrictions on the solution to the query. According to
the official specification of SPARQL [6], graph pattern expres-
sions can be constructed via operators including concatenation
via a point symbol (.), UNION, OPTIONAL, and FILTER. For
clarity reasons, we follow the practice in [9] by replacing the
point symbol (.) and OPTIONAL with AND and OPT when
presenting the syntax of SPARQL queries.

During the Query Transformation process, AND is typically
mapped to a join operation, UNION to a set union operation,
OPT to a left outer join, and FILTER to a selection [10].
An important property of the operators AND and UNION, as
discoursed in [9], is the fact that they are both associative and
commutative, thus making it possible to optimize distributed
SPARQL query processing using the optimization techniques
for relational algebra queries in the proposed hybrid P2P
architecture.

To obtain the solution to a SPARQL query, one should
evaluate the graph pattern that is included in the query. The
evaluation of a graph pattern P over an RDF dataset D,
denoted by ⟦P ⟧D, is a set of mappings defined in [9] as
follows:
● If P is a triple pattern t, then ⟦P ⟧D = {µ ∣ dom(µ) =

var(t) and µ(t) ∈ D}11.
● If P is (P1 AND P2), then ⟦P ⟧D = ⟦P1⟧D & ⟦P2⟧D.

11We argue that the definition here can be better described in the following
way based on our own understanding of the problem. If P is a triple pattern
t, then ⟦P ⟧D = {µ ∣ dom(µ) = var(t) and for the values of µ for the variables
in var(t), there is a triple in the dataset D that contains the same values in
corresponding positions.}

● If P is (P1 UNION P2), then ⟦P ⟧D = ⟦P1⟧D ∪ ⟦P2⟧D.
● If P is (P1 OPT P2), then ⟦P ⟧D = ⟦P1⟧D ⟦P2⟧D

12.
● If P is (P1 FILTER R), then ⟦P ⟧D = {µ ∈ ⟦P1⟧D ∣ µ

satisfies R}.
where dom(µ), the domain of a solution µ, is a subset of V in
which µ is defined, var(t) denotes the set of variables occurring
in pattern t, µ(t) refers to the triple that is obtained by
replacing the variables in t according to µ, and R is a built-in
filter condition. Each evaluation function above takes a graph
pattern expression as input and returns a set of mappings.

C. Primitive SPARQL Queries

The very basic building block for graph patterns is the
triple pattern. The Basic Graph Pattern (BGP) comprises sets
of triple patterns. To start with, we focus on the primitive
SPARQL queries by which we mean SPARQL queries with a
Basic Graph Pattern (BGP) consisting of only one single triple
pattern. As listed in [4], all the eight possible triple patterns
are: (?s, ?p, ?o), (?s, ?p, oi), (?s, pi, ?o), (?s, pi, oi), (si, ?p,
?o), (si, ?p, oi), (si, pi, ?o), and (si, pi, oi), where si, pi, and
oi denote the given subject, predicate, and object of a triple
and ?s, ?p, and ?o represent variables at the corresponding
positions in the triple.

SELECT ?x
WHERE { ?x ⟨foaf:knows⟩ ns:me. } (P)

Fig. 5. A Primitive SPARQL Query

Consider the primitive SPARQL query in Fig. 5 in which
the single triple pattern P will be translated into a SPARQL
algebra expression first: BGP(P). To evaluate such a SPARQL
abstract query on the RDF dataset that is formed by all RDF
triples in the data sharing system, the following steps occur.

Basic query processing: If, for example, N1 issues
the query in Fig. 5, we can hash on ⟨foaf:knows⟩ and
⟨http://example.org/ns/#me⟩ and get a hash value which cor-
responds to the index node N7 in Fig. 1. Then N1 routes
the query to N7. N7 checks its location table, finds all the
target storage nodes, and sends a query that contains the single
triple pattern to each target node. These storage nodes perform
pattern matching, collect all possible solution mappings, and
return them to N7, that is, the assembly site. Finally, N7 sends
the union of the solutions to N1. Parallelism is exploited, but
nonetheless, high transmission overhead may be incurred in
such a straightforward approach [20].

Optimization: We can possibly reduce the number of inter-
mediate results that may not necessarily appear in the final
query answer by combining data that comes from different
sources, namely storage nodes, but is directed to the same
destination13. Using the scenario in the previous basic query
processing, when N7 finds out all the target storage nodes by

12 is the operator for left outer join.
13This is similar to the in-network data aggregation techniques that are

widely used in the sensor network research, trading off communication for
computational complexity [21].

consulting its location table, it forwards the query from N1,
together with information on a sequence of target nodes that
the query should be forwarded through, to the node at the top
of the sequence list. Any node in the list accepts the query,
carries out pattern matching, obtains a set of solution mappings
from local RDF data repository, performs a join between the
mappings with those from its predecessor node, if any, and
sends the newly-generated solution mappings with the query
to its successor node. The last node on the list returns the final
solution mappings to N1.

Further optimization: Minimizing the amount of network
traffic involved has always been among the most important
optimization criteria for distributed query processing. In this
and following optimization techniques, we are primarily con-
cerned about minimizing the total amount of intersite data
transmission14. To this end, in an alternative approach, N7
locates all the target storage nodes via its location table and
finds out, via the frequency information in its location table,
that node D3, for instance, has the largest number of target
triples. Then N7 sends the query it received from N1, together
with information on a sequence of target nodes that the query
should be passed through with D3 as the final node. This
sequence list features a set of nodes arranged in the increasing
order of the frequency information about the triples of interest
they maintain. The rest occurs as described previously in
the generic optimization process. Node D3 is responsible for
returning the ultimate solution mappings directly back to N1.

D. SPARQL Queries with Conjunction Graph Pattern

In SPARQL, more complex graph patterns can be formed by
combining smaller graph patterns. For instance, the SPARQL
query in Fig. 6 has a BGP comprising a set of triple patterns
connected by the AND (.) operator. A BGP of this kind is
termed a conjunction graph pattern in [9].

SELECT ?x ?y ?z
WHERE {

?x ⟨foaf:knows⟩ ?z. (P1)
?x ⟨ns:knowsNothingAbout⟩ ?y. (P2)

}

Fig. 6. A SPARQL query with a Conjunction Graph Pattern

Let us assume that N1 in Fig. 1 issues such a query. During
query transformation, an abstract SPARQL query that contains
the following algebra expression will be obtained: BGP(P1.
P2).

Basic query processing: We can hash on ⟨foaf:knows⟩ and
get a hash value which corresponds to N4. Similarly, we hash
on ⟨ns:knowsNothingAbout⟩ and obtain another hash value
which indicates the index node N15. Subsequently, N1 routes
the query to N4. Following the same process for primitive
SPARQL queries as we introduced in Sect. IV-C, N4 is able
to obtain sets of solutions to a sub-query that comprises P1.

14Also, we provide optimization mechanisms that are intended to minimize
response time wherever appropriate.

Let P be (P1 AND P2). To perform ⟦P ⟧D = ⟦P1⟧D&⟦P2⟧D,
the final solution mappings will be obtained as follows. N4
forwards its solutions and the query to N15, which acquires
its solution mappings to a sub-query that contains P2, and a
local join is carried out between the sets of solutions from N4
and N15. The final solutions are sent back to N1.

Optimization: As mentioned earlier, the operator AND
is both associative and commutative. In a SPARQL query
containing only AND, the operations can be re-ordered in an
arbitrary manner. It is generally accepted in the distributed
query processing field that different orders of operators will
lead to difference sizes of intermediate results and the smaller
the intermediate results the more efficient the query process-
ing. For query optimization purposes, we intend to come up
with not only a “good” ordering of the execution of operators
but also a “right” set of sites at which each involved operation
should take place during query evaluation.

For example, in order to evaluate P above, the set of storage
nodes S1 that are located via N4 and another set S2 located
via N15 should be examined first. If S1 and S2 share storage
nodes in common, then the query with a conjunction query
pattern P may be processed differently from what has been
described above.

To better explain this, we assume that S1 = {D1,D3,D4}
and S2 = {D1,D2}. When N1 routes the query to N4 and
N15 simultaneously, N4 will send a sub-query that contains
P1 to D3. After a set of matching RDF triples T1 at D3 is
obtained, the sub-query as well as T1 is further transferred to
D4 at which the same process is performed and the local set of
matching triples T2 is merged with T1. Finally, the sub-query
with the merge of T1 and T2 is sent to D1 at which the local
set of matching triples T3 is merged with the merge of T1 and
T2

15. In the meantime, N15 sends a sub-query containing P2

to D2 and obtains a set of matching triples T4. The sub-query
and T4 are transferred to D1 where the set of matching triples
T5 is merged with T4. Up to this point, the sets of solution
mappings for both ⟦P1⟧D and ⟦P2⟧D are available and ⟦P ⟧D
can be done at D1.

If the overlap between S1 and S2 is more than one storage
node, for instance, S1 = {D1, D2, D4} and S2 = {D1, D2},
either D1 or D2 can be selected as the storage node at which
the final result for ⟦P ⟧D is generated. If D2 is chosen, then
the sequence of execution nodes for evaluating P1 is D4 →
D1 → D2 or D1 → D4 → D2 while the sequence of execution
nodes for evaluating P2 is D1 → D2. To sum up, the number
of potential sequences of execution nodes from a set S is n!
where S is the set of the execution nodes that can be located
via a single index node and (n+ 1) is the number of nodes in
S.

E. SPARQL Queries with Optional Graph Pattern

The optional graph pattern is meant to allow information
to be added to a solution mapping if the information is

15The sequence of nodes at which the merge of matching triples is carried
out can also be D4 → D3 → D1.

available. Even if some part of the pattern does not match, the
mapping will not be rejected. In a Semantic Web data sharing
system, we assume that participating nodes only possess partial
knowledge about resources their RDF data is describing.
Consequently, optional graph matching is a key feature for
such (and similar) applications.

A SPARQL query with an optional graph pattern P= (P1

OPTIONAL P2) is depicted in Fig. 7. This query will find
the subject (?x) of a triple with predicate ⟨foaf:name⟩ and
object “Smith”. In the meantime, the query needs to find the
object (?y) of a triple with the same subject and predicate
⟨foaf:knows⟩. If there is a triple with ?y as the subject, predi-
cate ⟨foaf:nick⟩, and object “Shrek”, a solution will contain the
subject (?y) of that triple as well. The optional graph pattern
will be initially converted into LeftJoin(BGP(P1), BGP(P2),
true)16 during query transformation.

SELECT ?x ?y
WHERE {

{ ?x ⟨foaf:name⟩ “Smith”.
?x ⟨foaf:knows⟩ ?y. } (P1)

OPTIONAL
{ ?y ⟨foaf:nick⟩ “Shrek”. } (P2)

}

Fig. 7. A SPARQL Query with an Optional Graph Pattern

According to the semantics of optional graph pattern ex-
pressions (see Sect. IV-B), ⟦P ⟧D = ⟦P1⟧D ⟦P2⟧D. Let Ω1

and Ω2 be sets of solution mappings of ⟦P1⟧D and ⟦P2⟧D,
and Ω1 - Ω2 is their set difference17. The left outer join of Ω1

and Ω2 is defined in [9] as Ω1 Ω2 = (Ω1 & Ω2) ∪ (Ω1 -
Ω2).

To evaluate a SPARQL query with an optional pattern P =
P1 OPT P2, we consider the use of the move-small strategy
(see Sect. II). After moving the smaller set of solutions, say
Ω1, to a node at which Ω2 is collected, (Ω1 & Ω2) and (Ω1

- Ω2) can be performed on the same node, and the union of
the two operation results is then directly returned to the query
initiator as the final solution mappings. This can be easily
extended to apply to the query scenario with multiple optional
(only) graph patterns.

Note that the OPTIONAL operator in SPARQL is left-
associative but not commutative. Therefore, if P is (P1 OPT
P2 OPT P3), then ⟦P ⟧D = ⟦P1⟧D ⟦P2⟧D ⟦P3⟧D. To
optimize the evaluation of such queries, we should focus on
seeking a “right” sequence of sites at which each involved
operation should occur instead of a “good” ordering of the
execution of operators.

F. SPARQL Queries with Union Graph Pattern

SPARQL allows more than one alternative graph patterns
to match and therefore all of the possible pattern solutions

16According to the rules in [6] for converting graph patterns in a SPARQL
query string into a SPARQL algebra expression, if no filter graph pattern is
embedded in the optional graph pattern, the third argument of LeftJoin(Pattern,
Pattern, expression) should be set to true.

17Operations on solution mappings can be referred to Sect. IV-A.

will be found. Figure 8 shows a SPARQL query with a union
graph pattern P = P1 UNION P2, where both P1 and P2

are conjunction graph patterns. During query transformation,
the union graph pattern is translated into Union(BGP(P1),
BGP(P2)).

SELECT ?x ?y ?z
WHERE {

{ ?x ⟨foaf:name⟩ “Smith”.
?x ⟨foaf:knows⟩ ?y. } (P1)

UNION
{ ?x ⟨foaf:mbox⟩ ⟨mailto:abc@example.org⟩.

?x ⟨foaf:knows⟩ ?z. } (P2)
}

Fig. 8. A SPARQL Query with a Union Graph Pattern

Basic query processing: In response to the semantics of
union graph pattern expressions (see Sect. IV-B), ⟦P ⟧D =

⟦P1⟧D ∪ ⟦P2⟧D. In addition, if Ω1 and Ω2 are sets of solution
mappings of ⟦P1⟧D and ⟦P2⟧D, the union of Ω1 and Ω2 is
defined as Ω1 ∪ Ω2 = {µ ∣ µ ∈ Ω1 or µ ∈ Ω2}. Therefore,
⟦P1⟧D and ⟦P2⟧D can be carried out in parallel as described
in the generic query execution plan for SPARQL queries with
a conjunction graph pattern (see Sect. IV-D). Solutions from
each pattern can then be combined via the union operation and
this operation can occur at any of the two nodes that collect
the solution mappings for ⟦P1⟧D and ⟦P2⟧D.

Optimization: Let S1 be the set of storage nodes that have
matching RDF triples for P1 and S2 be another set of storage
nodes that provide matching triples for P2. If S1 = {D1, D3},
S2 = {D2, D3}, then the query processing described above
can be optimized with the sequence of execution nodes for
evaluating P1 being D1 → D3 and the sequence of execution
nodes for evaluating P2 being D2 → D3. Once the sets of
solution mappings for P1 and P2 are both obtained at D3, the
union of the two sets can be performed to deliver the final
mappings for ⟦P ⟧D.

G. SPARQL Queries with Filter Graph Pattern

The FILTER operator in SPARQL is used to impose a
restriction on the solutions over the group in which the
operator itself appears. Pérez et al. define that the expression
(P FILTER R) is a filter graph pattern if P is a graph pattern
and R is a SPARQL built-in condition [9]. We present a
SPARQL query with a filter graph pattern (as well as an
optional graph pattern) in Fig. 9, which will be transformed
into Filter(C1, LeftJoin(BGP(P1. P2), BGP(P3), true)) in the
first place.

SELECT ?x ?y ?z
WHERE {

?x ⟨foaf:name⟩ ?name; (P1)
⟨ns:knowsNothingAbout⟩ ?y. (P2)

FILTER regex(?name, “Smith”) (C1)
OPTIONAL
{ ?y ⟨foaf:knows⟩ ?z. } (P3)

}

Fig. 9. A SPARQL Query with a Filter Graph Pattern

Basic query processing: Following the same process as
presented in Sect.IV-E, LeftJoin(BGP(P1. P2), BGP(P3), true)
is evaluated first, and at the node that collects the evaluation
result of the expression all the solution mappings are checked
against the condition C1. Only the mappings that satisfy C1

will be returned to the query initiator.
Optimization: Rules of filter pushing in the context of

SPARQL are presented in [10] for query optimization pur-
poses. According to these rules, the evaluation process of the
query in Fig. 9 will be slightly different from the one we
described above. Since the condition C1 only involves the vari-
able ?name in P1, the filter can be pushed into the BGP(P1)
and the query is transformed into LeftJoin(BGP(Filter(C1,
P1).P2), BGP(P3), true) instead.

V. CONCLUSIONS AND FUTURE WORK

The ad-hoc Semantic Web data sharing system that we
intend to support poses two major challenges: (1) the sys-
tem should allow data to be maintained and shared by its
own providers in a P2P paradigm and provide satisfactory
scalability, and (2) in such a fully-distributed context, queries
encoded in popular query languages for Semantic Web data
should be processed efficiently and successfully. We extended
previous work on a hybrid P2P architecture in which index
nodes self-organize into a ring topology while any storage
node is attached to one of such index nodes. A two-layer
distributed index structure was introduced to facilitate a fast
and efficient lookup of storage nodes that share the target data.
We investigated distributed query processing for SPARQL
queries of various forms in particular and discussed potential
SPARQL-specific query optimization techniques.

In general, the optimization criteria for distributed query
processing include minimizing the costs (both computational
and communication) and minimizing the response time. These
optimization goals may sometimes be conflicting. For instance,
the basic query processing in Sect. IV-C trades transmission
costs for a low response time while in the immediate following
optimization technique, the minimum data transmission is
achieved at the cost of the response time. We have yet to
investigate, in a fully-distributed context, how to process and
optimize SPARQL queries in the face of a mixture of such
objectives and come up with “good” query plans. Additionally,
we plan to carry out a performance evaluation of proposed op-
timization techniques (and their possible alternatives) through
experimental study in future work.

ACKNOWLEDGMENT

This work was performed while the first author was spon-
sored by the China Scholarship Council to pursue study at the
University of Ottawa, Canada, between 2011 and 2012 under
the supervision of Professor Gregor v. Bochmann.

We would also like to acknowledge the support of the
China Postdoctoral Science Foundation (No.20100470557),
the Engineering Disciplines Planning Project (No.XNG1246,
XNG1239), the National Natural Science Foundation of China
(No.61035003, 61202212, 61072085, 60933004, 61103198),

National Program on Key Basic Research Project (973 Pro-
gram) (No.2013CB329502), National High-tech R&D Pro-
gram of China (863 Program) (No.2012AA011003), National
Science and Technology Support Program (2012BA107B02),
and China Information Technology Security Evaluation Center
(CNITSEC-KY-2012-006/1).

REFERENCES

[1] G. Klyne and J. J. Carroll, “Resource Description Framework
(RDF): Concepts and Abstract Syntax,” W3C Recommendation,
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/, 2004.

[2] J. Zhou, K. Yang, L. Shi, and Z. Shi, “On the Support of Ad-Hoc
Semantic Web Data Sharing,” in Proceedings of the 7th International
Conference on Intelligent Information Processing. Guilin, China:
Springer, 2012, pp. 147–156.

[3] Z. Peng, Z. Duan, J.-J. Qi, Y. Cao, and E. Lv, “HP2P: A Hybrid
Hierarchical P2P Network,” in Proceedings of the 1st International
Conference on the Digital Society. Guadeloupe, French Caribbean:
IEEE Computer Society, 2007, pp. 18–22.

[4] M. Cai and M. Frank, “RDFPeers: A scalable distributed RDF repository
based on a structured peer-to-peer network,” in Proceedings of the 13th
International Conference on World Wide Web. New York, NY, USA:
ACM, 2004, pp. 650–657.

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan, “Chord: A scalable peer-to-peer lookup service for Internet
applications,” in Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications.
San Diego, California, USA: ACM, 2001, pp. 149–160.

[6] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language for
RDF,” W3C Recommendation, http://www.w3.org/TR/rdf-sparql-query/,
2008.

[7] S. Asaduzzaman, Y. Qiao, and G. v. Bochmann, “Cliquestream: Cre-
ating an efficient and resilient transport overlay for peer-to-peer live
streaming using a clustered dht,” Journal on Peer-to-Peer Networking
and Applications, vol. 2, no. 3, pp. 100–113, 2010.

[8] T. Locher, S. Schmid, and R. Wattenhofer, “eQuus: A Provably Robust
and Locality-Aware Peer-to-Peer System,” in Proceedings of the Sixth
IEEE International Conference on Peer-to-Peer Computing (P2P’06).
Cambridge, United Kingdom: IEEE Computer Society, 2006, pp. 3–11.

[9] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
SPARQL,” ACM Trans. Database Syst., vol. 34, no. 3, pp. 1–45, Sep.
2009.

[10] M. Schmidt, M. Meier, and G. Lausen, “Foundations of SPARQL query
optimization,” in Proceedings of the 13th International Conference on
Database Theory. Lausanne, Switzerland: ACM, 2010, pp. 4–33.

[11] W. Du, M.-C. Shan, and U. Dayal, “Reducing multidatabase query
response time by tree balancing,” SIGMOD Rec., vol. 24, no. 2, pp.
293–303, May 1995.

[12] H. Ye, B. Kerhervé, and G. v. Bochmann, “Revisiting Join Site Selection
in Distributed Database Systems,” in Proceedings of the 9th Interna-
tional Euro-Par Conference. Klagenfurt, Austria: Springer, 2003, pp.
342–347.

[13] D. W. Cornell and P. S. Yu, “Site Assignment for Relations and Join
Operations in the Distributed Transaction Processing Environment,” in
Proceedings of the 4th International Conference on Data Engineering.
Los Angeles, California, USA: IEEE Computer Society, 1988, pp. 100–
108.

[14] H. Ye, B. Kerhervé, G. von Bochmann, and V. Oria, “Pushing Quality of
Service Information and Requirements into Global Query Optimization,”
in Proceedings of the 7th International Database Engineering and
Applications Symposium. Hong Kong, China: IEEE Computer Society,
2003, pp. 170–179.

[15] D. Kossmann, “The State of the Art in Distributed Query Processing,”
ACM Comput. Surv., vol. 32, no. 4, pp. 422–469, Dec. 2000.

[16] M. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems
(2nd Edition). Prentice Hall, 1999, p. 666.

[17] R. Angles and C. Gutierrez, “The Expressive Power of SPARQL,” in
Proceedings of the 7th International Conference on The Semantic Web.
Karlsruhe, Germany: Springer-Verlag, 2008, pp. 114–129.

[18] M. Duerst and M. Suignard, “Internationalized Resource Identifiers
(IRIs),” http://www.ietf.org/rfc/rfc3987.txt, 2005.

[19] P. Hayes, “RDF Semantics,” W3C Recommendation,
http://www.w3.org/TR/rdf-mt/, 2004.

[20] C. Wang and M.-S. Chen, “On the complexity of distributed query
optimization,” IEEE Transactions on Knowledge and Data Engineering,
vol. 8, no. 4, pp. 650–662, Aug. 1996.

[21] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation
techniques for wireless sensor networks: a survey,” IEEE Wireless
Communications, vol. 14, no. 2, pp. 70–87, Apr. 2007.

